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Using Lyapunov exponents to predict the onset of chaos in nonlinear oscillators
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An analytic technique for predicting the emergence of chaotic instability in nonlinear nonautonomous
dissipative oscillators is proposed. The method is based on the Lyapunov-type stability analysis of an arbitrary
phase trajectory and the standard procedure of calculating the Lyapunov characteristic exponents. The concept
of temporally local Lyapunov exponents is then utilized for specifying the area in the phase space where any
trajectory is asymptotically stable, and, therefore, the existence of chaotic attractors is impossible. The proce-
dure of linear coordinate transform optimizing the linear part of the vector field is developed for the purpose
of maximizing the stability area in the vicinity of a stable fixed point. By considering the inverse conditions of
asymptotic stability, this approach allows formulating a necessary condition for chaotic motion in a broad class
of nonlinear oscillatory systems, including many cases of practical interest. The examples of externally excited
one- and two-well Duffing oscillators and a planar pendulum demonstrate efficiency of the proposed method,
as well as a good agreement of the theoretical predictions with the results of numerical experiments. The
comparison of the proposed method with Melnikov’s criterion shows a potential advantage of using the former
one at high values of dissipation parameter and/or multifrequency type of excitation in dynamical systems.
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I. INTRODUCTION

Lyapunov characteristic exponents~LCE! provide a quan-
titative measure of stretching and contracting deformati
of an infinitesimally small phase space sphere in the vicin
of an arbitrary trajectory in a dynamical system. So defin
they also characterize the divergence~convergence! rates of
two initially close trajectories residing on an attractor a
serve as indicators of the stability of motion. Total number
Lyapunov exponents that a system possesses is equal t
dimension of the phase space, or, in other words, the num
of independent variables necessary to fully characterize
motion. Being invariant under a smooth change of coor
nates, LCE provide a useful quantitative measure of stab
for various types of motion including complex quasiperiod
orbits and chaos and, together with other dynamic invaria
such as fractal dimension and Kolmogorov-Sinai entropy@1#,
play an important role in the theory of nonlinear oscillation

The fact that LCE can be used for distinguishing differe
types of attractors in dynamical systems makes them e
cially useful for the purpose of classifying the complicat
oscillatory regimes or detecting transitions between moti
of different types. In particular, positive sign of the large
LCE is commonly accepted as a hallmark of chaotic osci
tions, which demonstrate strong sensitivity to initial con
tions and exponential time diversion of nearby trajectori
On the contrary, stable periodic or quasiperiodic orbits
characterized by negative values of all the LCE~except the
one in the tangent direction to the trajectory that is alwa
zero!. The knowledge of the full Lyapunov spectrum~or-
dered by their magnitude values of all LCE! is of crucial
importance for understanding the basic phenomenolog
many problems of mechanics@2#, quantum physics@3#,
theory of turbulence@4#, biological systems@5#, or geophys-
ics @6#. Systems with two or more positive LCE also attra
considerable attention as examples of hyperchaotic beha
1063-651X/2002/66~1!/016214~17!/$20.00 66 0162
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in view of their potential application for secure communic
tion schemes based on chaotic synchronization@7#.

It should be noted that, by their definition, LCE a
asymptotic quantities defined in the limit oft→`, as they
characterize the average growth rate of a set of mutu
orthogonal vectors in the tangent space. Their magnitu
generally depend on the starting point on the trajectory~ini-
tial conditions!, but, if the motion on the attractor is ergodi
the averaged values are the same for almost all initial co
tions in the basin of attraction, except, maybe, for a set
Lebesgue measure zero@1,8#. In 1968 it had been proven b
Oseledec@9# that such long time averages do exist for
broad class of dynamical systems including most of the s
ations of practical interest.

In many cases it turned out to be constructive studying
only the mean values, but also the fluctuations of expans
rates in both time and phase space. The values of Lyapu
exponents calculated over a finite time interval depend
initial conditions, and corresponding distribution functio
can be introduced as quantitative measures of comple
@8,10,11#. Such exponents are usually called local Lyapun
exponents~LLE! or local growth rates to account for the
dependence on the position of the starting point in the ph
space, and they have been proven useful in many wo
studying the statistical properties of strange attractors@12–
14#, attractor crises@10,11#, intermittency @15#, and time
variation of the fractal dimension of strange attracto
@16,17#.

On the other hand, different exponents have been in
duced to study both time and phase space variability of
stability exponents in the limitt→0. Mathematically, these
exponents can be interpreted as limit case of LLE calcula
within an infinitesimally small time interval. In order to dis
tinguish these instantaneous growth rates from LLE a
stress the importance of the explicit time dependence we
©2002 The American Physical Society14-1
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VLADIMIR B. RYABOV PHYSICAL REVIEW E 66, 016214 ~2002!
them temporally local Lyapunov exponents~TLLE!. These
quantities have been demonstrated to be effective in sev
ways, e.g., for characterizing the interaction between de
ministically chaotic and noisy systems@18–20#, quantifying
local predictability in the phase space@21,22#, or numerically
calculating the values of traditional LCE@23,24#.

In this paper we consider another application of TLL
the method for predicting the emergence of general type
instability in dissipative dynamical systems that may ca
the formation of a strange attractor with at least one posi
LCE. Our approach is based on the possibility to derive
plicit equations that govern the time evolution of TLLE, d
rectly from the original set of differential equations descr
ing the dynamical system. Then the equations for TLLE c
be analyzed analytically, together with the set of govern
equations, enabling one to obtain the estimate of the stab
area in the phase space and/or the space of control pa
eters. Note that, although it is typically highly desirable
know the dependence of the Lyapunov spectrum on the c
trol parameters, this problem defies analytical treatment. A
rule, it appears impossible to obtain the values of LCE fr
the functional form of the multidimensional mapping or sy
tem of nonlinear differential equations defining the evoluti
of the dynamical system of interest. So far, the numer
calculations remain the only straightforward way of analys
when the information on the largest LCE or the fu
Lyapunov spectrum is necessary@1,25–27#.

Contrary to previous studies focused mainly on the
merical analysis of LCE we develop a procedure for obta
ing their estimates analytically from differential equation
The feasibility of the principal idea based on the analysis
dynamical equations for Lyapunov vectors in the tang
space~initially formulated in the context of systems of linea
equations with periodic coefficients@28#! has been already
demonstrated for several nonautonomous nonlinear osc
tors with one-and-a-half degrees of freedom@29#. Here we
generalize the results reported in Ref.@29# to a broad class o
dynamical systems of arbitrary dimension and various ty
of nonlinearity. The ultimate condition for the emergence
instability is expressed in the form of stability criterion for
bounded region in the phase space, where all trajectories
asymptotically stable, and, therefore, converge to either fi
points or stable periodic attractors. The proposed way
analysis is fundamentally a Floquet’s type approach@30# but
generalized to include nonperiodic or multifrequency typ
of motion. Moreover, the final result formulated in terms
the amplitude of motion does not depend on the particu
functional form of the external force. From this viewpoint,
could be especially useful in a situation of broadband ex
nal excitation@31,32# of oscillators, or noisy dynamical sys
tems where the random time perturbations cannot be con
ered small.

The paper is organized as follows. In Sec. II we introdu
the concept of TLLE for systems of differential equatio
and formulate the stability conditions for an arbitrary traje
tory in the phase space. Then we discuss the effect of a li
coordinate transform on the stability properties of govern
equations and describe a procedure for optimizing the sta
ity criterion in terms of the amplitude and/or velocity o
01621
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motion. Section III provides the analysis and explicit form
las for the stability conditions in an externally excited d
namical system of the second order. In Sec. IV the differe
between linear and nonlinear systems is discussed fro
stability viewpoint. The procedure is further developed f
generalizing the stability analysis of linear system to the c
of arbitrary degree of nonlinearity in the oscillators of th
second order. Section V gives several examples of anal
for several classical nonlinear oscillators, such as Duffi
system and mathematical pendulum. The comparison of
predictions for chaos onset made with the proposed te
nique to those following from other approaches, like Meln
kov method or conventional stability analysis, has been a
carried out. Section VI contains a summary and interpre
tion of results in terms of the necessary conditions of cha
instability in dynamical systems.

II. MATHEMATICAL FRAMEWORK

A. Definition of temporally local Lyapunov exponents

TLLE are introduced in the following way@18–20,23#.
Consider a dynamical system described by the set ofn ordi-
nary differential equations

dx

dt
5F~x, t !, xPRn. ~1!

Stability of an arbitrary solution of Eq.~1! x* (t), is defined
by the linearized system,

dy

dt
5 Ĵ„x* ~ t !…y, ~2!

where Ĵ„x* (t)…[]F„x* (t)…/]x is n3n time-dependent
Jacobian matrix,y is ann vector in the tangent space corr
sponding to an infinitesimal perturbation of the trajecto
x* (t). The standard algorithm for calculating the spectru
of LCE @25,26# consists in solving Eqs.~2! simultaneously
with Eq. ~1! for a set of mutually orthonormal vectors$yk%
(k51,2,...,n) and estimating the average expansion rates
the lengthsrk5iyki of the vectors$yk%. The general solution
of Eq. ~2! is given by

y~ t !5M̂ ~ t !y~0!,

whereM̂ (t) is the fundamental matrix of solutions for Eq
~2!. It follows from the results obtained by Oseledec@9# that
for almost any choice of initial conditions there exists t
following long time limit for the norms of a suitably chose
set of orthonormal vectorsyk(0):

lk5 lim
t→`

1

t
lniM̂ ~ t !yk~0!i . ~3!

In other words this means that asymptotically, in the limit
t→`, the evolution of iyki is approximated byiyk(t)i
5iyk(0)ielkt, where the exponentslk constitute the spec
trum of LCE.
4-2
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In order to obtain the dynamical equations for TLLE w
use the approach similar to the one described in Refs.@21–
24# and rewrite Eq.~2! in the polar coordinate frame for th
amplituder5iyi and directionswm (m51,2,...,n21) of an
arbitrary vectory in the tangent space.

r
dr

dt
5(

l 51

n

yl

dyl

dt
, ~4a!

dwm

dt
5F~w1 ,w2 ,...,wn21!, ~4b!

where yl are Cartesian components of the vectory, r2

5( l 51
n yl

2; and the angleswm can be found from the follow-
ing formulas defining the transition from Cartesian to sphe
cal coordinates inRn:

y15r cosw1 ,

y25r sinw1 cosw2 ,

yi5r cosw i)
l 51

i 21

sinw l , ~5!

yn215r coswn21)
l 51

n22

sinw l ,

yn5r )
l 51

n21

sinw l .

It is easy to see that, e.g., in the casen53 Eqs. ~5! are
reduced to the standard spherical coordinates in the th
dimensional space~r, w, u!, where w15u, w25w, and,
hence, the formulas~5! are just a generalization of the sta
dard spherical coordinates to a high-dimensional space.

Note that if we putr(0)51 then by the definition~3! the
spectrum of LCE is expressed as

lk5 lim
T→`

1

T
ln rk~T!, ~6!

whererk(T) correspond to the lengths of the initially ortho
normal vectors$yk% after the time intervalT.

By dividing Eq. ~4a! by r2, we obtain the differential
equation for the time evolution of lnr(t),

d

dt
@ ln r~ t !#5

1

r2 F(
l 51

n

yl

dyl

dt G . ~7!

On the other hand, Eq.~2! rewritten in the scalar form for
each of the Cartesian components of the vectory looks like
01621
i-

e-

dyl

dt
5 (

m5 l

n

j lm„x* ~ t !…ym5r (
m5 l

n

j ln„x* ~ t !…coswm )
i 51

m21

sinw i ,

~8!

where j lm are the components of the time-dependentn3n
matrix J, and Eqs.~5! have been also taken into accoun
Note that each componentyl in Eqs.~5!, as well as its time
derivativedyl /dt, given by Eq.~8!, is a linear function ofr,
therefore, the dynamics of ln@r(t)# do not depend onr, and
the general form of the evolution equation for ln@r(t)# can be
now written as

d

dt
@ ln r~ t !#5P~w1 ,w2 ,...,wn21!, ~9!

whereP is a function of angular coordinates only. Integratio
of Eq. ~9! over the finite time intervalT gives

ln@r~T!#5E
0

T

P„w1~ t !,w2~ t !,...,wn21~ t !…dt, ~10!

where the time-dependent functionswm(t) (m51,2,...,n
21) are defined by the solutions of Eqs.~4b! and~1!. Even-
tually, by substituting Eq.~10! in Eq. ~6! we obtain the fol-
lowing equations, defining the spectrum of LCE:

lk5 lim
T→`

1

T E
0

T

Pk„w1~ t !,w2~ t !,...,wn21~ t !…dt. ~11!

It follows from Eq. ~11! that LCE are, in fact, long time
averages of corresponding functions of angular coordina
of the vectors$yk%. If we calculate the integral in Eq.~11!
over a finite time interval, we obtain the growth rates, d
pending on the starting point of integration in Eqs.~1!, i.e.,
the spectrum of LLE. The instantaneous values of the fu
tions Pk„w1(t),w2(t),...,wn21(t)… depend on both the time
and phase space coordinates and constitute the spectru
TLLE. So, the following expression can be used as the d
nition of TLLE @denoted hereafter asmk(t)#:

mk~ t !5
d@ ln rk~ t !#

dt
5Pk„w1~ t !,w2~ t !,...,wn21~ t !….

~12!

The anglesw i ( i 51,2,...,n21) in Eq. ~12! have to be calcu-
lated from Eq.~4b! solved simultaneously with Eq.~1!.

The equations for the angles in Eq.~4b!, as well as the
functions Pk„w1(t),w2(t),...,wn21(t)…, do not depend on
the amplitudesrk and, hence, can be integrated indepe
dently from Eq.~4a!. This assertion can be proved by diffe
entiating Eqs.~5! with respect to time and substituting Eq
~2! on their left-hand side. For an arbitrary component of t
vectory we have from Eq.~5!,
4-3
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dyi

dt
5

dr

dt
cosw i)

l 51

i 21

sinw l2r
dw i

dt
sinw i)

l 51

i 21

sinw l

1r cosw i

d

dt F)l 51

i 21

sinw l G , ~13!

whereP denotes the usual product. Now, starting from t
last two components of the vectory, yn21 andyn , we mul-
tiply their derivatives by sin(wn21) and cos(wn21), respec-
tively, and subtract one from another. Finally, we have
implicit equation for the dynamics of the phasewn21 ,

dyn

dt
coswn212

dyn21

dt
sinwn215r

dwn21

dt )
l 51

n22

sinw l .

~14!

After substituting Eq.~8! for l 5n, n21 in Eq. ~14! and
dividing by r, we come to the equation fordwn21 /dt of the
form ~4b!, where the right-hand side depends only on an
lar coordinates. It can be proved by induction that all oth
equations for the angleswm in Eq. ~4b! are also independen
of r.

It should be noted that some of the just discussed gen
properties of Eqs.~4! defining the dynamics of arbitrary vec
tors in tangent space have been already utilized by o
authors in different contexts. In particular, the independe
of expansion rates on the length of the vector in the tang
space justifies the validity of the periodic renormalization
the lengthsiyki used in the standard procedure of LCE co
putation for avoiding the overflow due to the exponent
growth of iy1i on a chaotic attractor@1,26#. On the other
hand, the relations similar to Eq.~4! have been recently dem
onstrated to be useful for developing an efficient method
computing the LCE spectrum@24#. The approach propose
in Ref. @24# reduces the number of necessary-to-integr
equations in the system~2! by excluding the length of the
vectors$yk% from consideration and analyzing the dynam
of some suitably chosen angular variables only.

B. Stability of solutions of differential equations and TLLE

Any trajectory in the phase space of system~1! is stable,
if all the corresponding LCE are nonpositive. Typically, t
stability can be lost when at least one of the LCE calcula
along the trajectory becomes positive due to the chang
the control parameters. In terms of the tangent space
means that the length of an arbitrary vector defining the p
turbation starts growing exponentially with time. As we a
ready noted, it is of particular importance to be able to p
dict the occurrence of such kind of transition in dynamic
systems. In the general case of an arbitrary dynamical sys
it appears impossible to develop an analytical method
would allow solving the above problem. It is, therefor
highly desirable to obtain at least some estimates for
values of control parameters where the instability may oc
or, in other words, to derive a necessary condition for
chaotic motion to appear. In terms of stability theory,
inverse of the necessary condition of instability constitute
sufficient condition for stability, therefore, one can alwa
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specify where the unstable motions can arise by finding
area of stability in the phase space or the space of con
parameters.

As follows from ~11!, ~12!, the LCE (l i) are long time
averages of the corresponding TLLE (m i). If we arrange the
values ofl i in descending order, then the instability mea
the positive value of the first~largest! LCE, i.e.,l1.0. It is
evident, thatl1 can take a positive value only ifm1 is greater
than zero during some time intervals. On the contrary, if
inequality

m1~ t !,0 ~15!

holds all the time, the system is asymptotically stable, i.e.,
the perturbations are exponentially shrinking with time an
hence, chaotic motions are precluded. From the inequa
~15!, together with Eqs.~1!, ~2!, it appears possible to obtai
the relation between the control parameters and phase s
coordinates which guarantees that the system is ‘‘safe’’ in
sense that if the trajectory never leaves the region with ne
tive values ofm1 , then no chaotic behavior appears. T
goal is reached by analyzing the structure of the funct
m1(t)5P1„w1(t),w2(t),...,wn21(t)…, together with solu-
tions of Eq. ~1!, which define the dynamics of angleswm
through Eqs.~2! and ~4!. The general form of the function
P1„w1(t),w2(t),...,wn21(t)… follows from Eqs.~2!, ~5!, ~7!.
If we substitute Eq.~2! in ~7! and use Eq.~5!, the following
relations are obtained:

P1„w1~ t !, w2~ t !,...,wn21~ t !…

5
1

r2 (
l 51

n

(
m51

n

j lm„x* ~ t !…ylym

5(
l 51

n

(
m51

n

j lm cosw l coswm)
i 51

l 21

sinw i )
k51

m21

sinwk . ~16!

The terms in the right-hand side of the Eq.~16! can be re-
grouped in a way allowing the conclusion on the sign
P1„w1(t),w2(t),...,wn21(t)… to be made,

P1~w„t,x* ~ t !…!5G1~ Ĵ„x* ~ t !…!1H1~w„t,x* ~ t !…,Ĵ„x* ~ t !…!,
~17!

where the functionG1 does not depend on the anglesw i and
is defined by the dynamics of the diagonal elements of
perturbation matrixĴ only,

G1~ Ĵ!5 (
i 51

n21
1

2n j ii „x* ~ t !…1
1

2n21 j nn„x* ~ t !…. ~18!

The functionH1 can be expressed as the sum of products
matrix elementsj lm„x* (t)… and cosine or sine functions o
various linear combinations of anglesw l ,

H1~w,Ĵ!5(
l ,m

1

clm
j lm sinS (

i
kiw i D , ~19!
4-4
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where clm , ki are integer constants,j lm and w i are time-
dependent functions. The criterion of stability for any so
tion of Eq. ~1! defined by inequality~15! can now be refor-
mulated in terms of the functionsH1 , G1 as follows:

min
t

@G1~ Ĵ„x* ~ t !…!#.max
t,w

@H1„w~ t,x* ~ t !…,Ĵ„x* ~ t !…!#.
~20!

The opposite inequality would mean the potential instabi
of the trajectoryx* (t) in the phase space of the system~1!.
Indeed, the stability of any trajectory is defined by the b
ance of positive and negative values of the largest TLLE.
the phase trajectory evolves in the phase space, during
tain time intervals it can lie outside the border defined by E
~20!, where the perturbations are exponentially amplified
the dynamics. If the positive values of TLLE prevail on a
erage, the motion becomes unstable, including the possib
for chaotic attractors to appear. When the long-time aver
of the first TLLE is negative, then the largest LLE is al
negative and, therefore, the whole trajectory is stable. Ac
ally, the inequality~20! defines an area in the phase spa
where any trajectory is asymptotically stable. If the trajecto
never leaves the area of stability~20! it cannot become un
stable and, therefore, it is by no means chaotic.

It should be, however, noted that a straightforward cal
lation of the functionsG1 andH1 from Eqs.~1!, ~2! does not
always allow us to obtain the explicit equation for the bord
of the asymptotic stability area in the phase space. As
demonstrate below with several examples of nonlinear os
lators this happens due to the presence of both the expan
and contracting directions around a typical trajectory that
consequence of the affine character of the phase flow in
vicinity of a generic stable fixed point~see, Fig. 1!. In terms
of the functions G1 and H1 this means that
mint@G1( Ĵ„x* (t)…)# may be strictly less than
maxt,w@H1(w„t,x* (t)…,Ĵ„x* (t)…)# for any trajectoryx* (t),
and, hence, the inequality~20! may never be satisfied.

Fortunately, the particular form of the functionsG1 and
H1 depends on the choice of coordinates~see also Ref.@33#!,
and in many cases it turns out possible to obtain the bor
of the asymptotic stability area by introducing a suitable
ordinate transformation. As will be shown below, the univ
sal solution to the problem of finding such a transform
provided by a linear change of coordinates diagonalizing
linear part of the flowF(x,t) in the vicinity of an arbitrary
point in the phase space. This kind of transformation
known to be a standard tool in the analysis of differen
equations@see, e.g.,@34## and is usually used as a first ste
allowing us to simplify the linear part of the problem ‘‘a
much as possible.’’

C. Linear coordinate transform

A standard way of analyzing a dynamical system can
roughly described as follows. The system~1! can be repre-
sented by the form

dx

dt
5Âx1«N~x!1f~ t !, xPRn, ~21!
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where Â is a constantn3n matrix, N(x) is a nonlinear
vector-function vanishing at the originN(0)50, together
with all of its partial derivatives

]N~x!

]x U
x50

50,

« is a dimensionless parameter, not necessarily small,f(t) is
a vector of external forces. Such problem posing implies
presence of a fixed point at the origin whenf(t)[0. In the
case of a different position of the fixed point, it can be
ways shifted to zero by the change of coordinatesx→x
2x0 , which moves the origin to the locationx0 of the fixed
point. Moreover, we also assume that the fixed point
stable, i.e., all the eigenvalues of the matrixÂ have negative
real parts.

A linear coordinates transform

z5B̂x, ~22!

where B̂ is a constant realn3n matrix, recasts the system
~21! to the form

dz

dt
5B̂ÂB̂21z1«B̂N~B̂21z!1g~ t !, zPRn, ~23!

where, the vector-functiong(t) defines the external forces i
the new coordinates. After the transformation~22!, the lin-
earized equations of motion read

dw

dt
5L̂ „z* ~ t !…w, ~24!

where the elements of the perturbation matrixL̂ now consist
of two parts

L̂ „z* ~ t !…5D̂1«B̂
]

]z
@N~B̂21z!#U

z5z* ~ t !

, ~25!

where the notationD̂[B̂AB̂21 is used. The elements of th
matrix B̂ can be always chosen in a way making the mat
D̂ diagonal or block diagonal@35#. This coordinate transform
makes the fixed point at the origin of the tangent space
affine, that results in the absence of expanding directions
a vector centered at the origin. As a consequence, after
transformation~22! diagonalizing the linear part of the prob
lem, there appears a certain area in the phase space, w
any infinitesimal sphere experiences only contraction in a
direction. Then, the inequality~20! in the new coordinates
allows obtaining an explicit equation for its border.

It should be, however, noted that after such a transform
tion of coordinates, the condition~20! might provide not the
best possible estimate for the size of the asymptotic stab
area. Under any circumstances, it gives some approxima
for, e.g., the value of the maximal stable amplitude of mot
or maximal velocity. However, since the analysis used
diagonalizing the matrixÂ utilizes the information on the
properties of the linear part of the problem only, the obtain
4-5
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estimate of the size of stability area is, as a rule, stron
underestimating the values of coordinates and/or control
rameters where chaotic instability is likely to occur. As w
demonstrate below, a substantial improvement can
achieved by applying a different coordinate transform of
type ~22!. The modification consists in taking into accou
the particular form of the nonlinearity functionN~x!, when
calculating the elements for the transformation matrixB̂.
Then, in the new coordinates, the linear part of the system
nondiagonal, but, nevertheless, an infinitesimal sphere in
tangent space contracts in all directions. The advantag
the proposed method consists in maximizing the size of
asymptotic stability area, or, in a different perspective, o
taining a better estimate for the chaotic instability thresh
in terms of the amplitude and/or velocity of motion.

In subsequent sections we demonstrate the feasibilit
the proposed method with several examples of nonauto
mous nonlinear oscillators of the second order. Although
technique can be used for the analysis of almost any~includ-
ing high-dimensional! passive dynamical system, we wou
like to restrict our consideration in the present paper by
case of second-order nonautonomous systems~three-
dimensional phase space!. This choice enables us to compa
our results with numerous estimates of chaotic instabi
area for these particular models existing in the literature.

III. ASYMPTOTIC STABILITY CRITERION FOR A
NONAUTONOMOUS SYSTEM OF THE SECOND ORDER

Evolution equations~1! for an arbitrary dynamical system
of the second order with an external force are given by

dx1 /dt5 f 1~x1 ;x2!1F1~ t !, dx2 /dt5 f 2~x1 ;x2!1F2~ t !,
~26!

where the nonlinear functionsf 1,2 are defined by the proper
ties of the system,F1,2(t) characterize the applied force
acting independently of the system dynamics. Following
procedure developed in the previous section we rewrite
linearized equations~2! for an arbitrary vectory in the tan-
gent space in the polar coordinate frame. Finally, we ob
the equations describing the dynamics of the lengthr and
phasew of the vectory

dr

dt
5

r

2
@ j 111 j 221~ j 112 j 22!cos~2w!1~ j 121 j 21!sin~2w!#,

dF

dt
5

1

2
@ j 212 j 121~ j 121 j 21!cos~2w!1~ j 222 j 11!sin~2w!#,

~27!

where j i j „x* (t)…[] f i /]xj are the components of the pertu
bation matrix Ĵ depending on time through the solution
x* (t) of Eqs.~26!. The expression for the largest TLLE fo
lows directly from the first of the Eqs.~27! and definition
~12!

2m1~ t !5 j 111 j 221~ j 112 j 22!cos~2w!1~ j 121 j 21!sin~2w!,
~28!
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where the time dependence ofm1 is defined by the concur
rent solution of Eqs.~26! and ~27!. The condition for the
asymptotic stability of the solutionx* (t) of the system~21!
can be now obtained from Eqs.~20!, ~28! as

min
x* ~ t !

@~ j 111 j 22!
2#.max

x* ~ t !
@~ j 112 j 22!

21~ j 121 j 21!
2#.

~29!

In the following, when studying the inequalities of the typ
~29!, we shall omit the min and max functions calculat
over the range of variation of the phase space coordina
However, it should be kept in mind that an arbitrary traje
tory is asymptotically stable only if the inequality of typ
~29! is satisfied within a certain range of the phase sp
coordinates~from minimal to maximal values! calculated
along the corresponding solutions of Eqs.~26!.

Since the matrix elementsj ik depend on coordinate
(x1 ,x2), the inequality~29! defines the area in the phas
space where the perturbations around a fiducial trajec
contract with time exponentially, thus ensuring th
asymptotic stability of the solution. Note also that the le
hand side of Eq.~29! is the divergence of the phase spa
flow along the trajectoryx* (t), characterizing the overal
dissipation properties of the system. From this perspect
the inequality~29! establishes a well-known fact that diss
pation stabilizes the motion and imposes a threshold for
appearance of instabilities.

As we already noted, in a generic situation, it appe
necessary to perform a change of coordinates, which tra
forms the inequality~29! to the form suitable for the subse
quent analysis. An arbitrary linear transformation of ty
~22! does not change the general form of Eq.~28!, but j ik are
now to be replaced with the corresponding elements of
matrix L̂[B̂ĴB̂21 defined by the Eq.~25!. The condition of
asymptotic stability ~29! can now be rewritten as (l 11
2 l 22)

21( l 121 l 21)
2,( l 111 l 22)

2 or, equivalently,

(
i ,k

l ik
2 ,@Tr~ L̂ !#212 det~ L̂ !, ~30!

where l ik are the elements of the matrixL̂ , depending on
phase space coordinates, control parameters, and eleme
the transformation matrixB̂. Note, that the right-hand side o
the inequality~30!, being expressed via the trace and det
minant of the matrixL̂ , is invariant under any linear trans
formation and, hence, independent from the values of
matrix elements ofB̂.

The sum at the left of Eq.~30! is the Euclidean norm of
the matrixL̂ , generally known to be dependent on the cho
of coordinates@36#. It reaches a minimum, whenB̂ trans-
forms the matrixL̂ to the canonical~diagonal! form, and is
unlimited from above. It is a well-established fact in th
matrix theory that the Euclidean norm does not depend
rotations of the coordinate frame, or, in other words it is
unitary invariant matrix measure. Therefore, not all the e
ments of the matrixB̂ are independent parameters of t
4-6
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problem, and the inequality~30! can be recast to the follow
ing form containing two independent parameters only:

@u~ j 112 j 22!1 j 212~u21v2! j 12#
2,4v2~ j 11j 222 j 21j 12!,

~31!

where the new parametersu, v are introduced as

u5
b11b121b21b22

b12
2 1b22

2 , v5
b11b222b21b12

b12
2 1b22

2 ~32!

and j ik , bik are the elements of the matrixesĴ and B̂, re-
spectively.

Since the values of the parametersu, v are arbitrary, they
can be chosen in a way maximizing the size of the stab
area in the phase space. The matrix elementsj ik are different
nonlinear functions of the phase space coordinatesx1 , x2 ,
and the range of their variation is defined by the particu
functional form of the nonlinearity functionsf 1 , f 2 in Eqs.
~26!, the type of external perturbationsF1 , F2 and, eventu-
ally, by the size of the attractor in the phase space. So, if
necessary to obtain the asymptotic stability conditions
terms of the control parameters, one has to estimate the r
of variation of the coordinatesx1 , x2 . It should be, however
noted that this problem cannot be solved for any type
external force and requires additional methods of analysi
be used. Below, we restrict our consideration by several
amples and demonstrate the efficiency of the proposed
proach for predicting the onset of chaos in these system

IV. NONAUTONOMOUS PASSIVE
NONLINEAR OSCILLATOR

A. Asymptotic stability condition

As an example of a particular system with one-and-a-h
degrees of freedom governed by the equations of the
~21!, we take the following nonlinear oscillator:

d2x

dt2
1d

dx

dt
1v0

2x1«N~x!5 f ~ t ! ~33!

that has been used as a basic model in many problem
mechanics, electronics, optics, electromagnetic field the
@31,34,37,38#, etc. Here,x is a generalized coordinate,d
.0 is a linear dissipation parameter,N(x) is the function
defining the shape of the potential well@N(0)50; N8(0)
50, where prime means differentiation byx#, « is the dimen-
sionless parameter, andf (t) is the external force. Note tha
Eq. ~33! includes such classical systems as Duffing oscilla
and mathematical pendulum as special cases.

By introducing the variablesx15x; x25dx/dt the system
~33! is transformed to the standard form

dx1

dt
5x2 ,

dx2

dt
52dx22v0

2x12«N~x1!1 f ~ t ! ~34!
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and the variational equations~2! in the vicinity of an arbi-
trary trajectoryx* (t) for this system look like

dy1

dt
5y2 ,

dy2

dt
52v0

2y12dy22«V„x* ~ t !…y1 , ~35!

wherey1,2 are the components of the perturbation vectory,

V„x* ~ t !…5
dN

dx1
U

x15x* ~ t !

.

Then, the explicit expression for the largest TLLE follow
directly from its definition~12! and the equation for the norm
of iyi5r in the polar coordinates defined byy15r cos(w);
y25r sin(w)

m1~ t ![
1

r

dr

dt

5
1

2
@2d1d cos 2w~ t !

1~12v0
22«V„x* ~ t !…!sin 2w~ t !#, ~36!

where x* (t) is an arbitrary solution of Eq.~33! and w(t)
stands for the direction of the vectory defined by the Eqs.
~35!.

The functionsG1( Ĵ) and H1(w,Ĵ) defining the area of
asymptotic stability in accordance with Eqs.~20!, ~29! can be
easily found from Eq.~36! as

G1~ Ĵ!52d,

H1~w,Ĵ!5d cos~2w!1„12v0
22«V~x* !…sin~2w!.

~37!

It is clear from Eq. ~37! that maxw@H1(w,Ĵ)#
5Ad21„12v0

22«V(x* )…2, which is always greater than
mintG1( Ĵ)52d, and, therefore, no conclusion about th
stability area in the phase space can now be obtained. As
already mentioned, at this stage it is necessary to introdu
certain transformation of coordinates that would make
vicinity of origin not affine and enable one to obtain co
structive results from these equations.

B. Normal form of a linear oscillator

In order to introduce the coordinate transform making fe
sible the stability analysis, we propose to consider first
most elementary case of a linear oscillator («50). Although
such an analysis is rather trivial, it allows us to develop
intuition, necessary for a general case of oscillators with
bitrary degree of nonlinearity. So, just for the matter of cla
ity, we dwell upon this simple case in some more detail.

For the linear system, the variational equations~35! do
not depend on the solutions of Eq.~34!, and it is well known
that for d.0, irrespective of the particular form of the tim
dependence of the external force, any trajectory is asymp
cally stable, and no instability can appear. At the same tim
4-7
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VLADIMIR B. RYABOV PHYSICAL REVIEW E 66, 016214 ~2002!
the expression for the largest TLLE for this oscillator sho
the presence of potential instability in exactly the same m
ner as it was in the case of the nonlinear oscillator~33!

m1~ t !5 1
2 @2d1d cos~2w!1~12v0

2!sin~2w!#

5 1
2 @2d1A cos~2w2c!#, ~38!

whereA5Ad21(12v0
2)2, c5tan21(@12v0

2#/d). It follows
from Eq. ~38!, that, sinceA.d, the phase of the vectory
may hit the angular sector defined byu2w2cu,cos21(d/A)
where the largest TLLE is positive and, hence, the length
y may grow exponentially with time, thus presenting qu
unexpected behavior for a linear system. This ‘‘unstab
character of solutions can be easily understood by consi
ing the geometry of trajectories in the vicinity of the orig
for the linearized system~35! shown in Fig. 1. If 0,d
,2v0, there is a stable focus at the origin, whereas fod
.2v0 the focus becomes a stable node. Although, on a
age, the length of an arbitrary vector at the origin contra
with time, there are both stretching and contracting phase
its time evolution. For example, the vectorbW in Fig. 1 is
stretched by the dynamics, while the vectoraW is getting
shorter with time. This effect is caused by affine characte
the phase flow, and it is a generic property of the phase fl
in the vicinity of any stable fixed point. It is, however, we
known from the theory of differential equations@35# that any
linear phase flow can be made not affine by means of a lin
coordinate transformation~22!, which has no effect on the
stability properties of trajectories@37# but recasts Eqs.~34!,
~35! to the form with the largest TLLE being strictly negativ
in a certain area of the phase space. After such a transfo
tion, the equations~34! with «50 take the so-called norma
form

dz1

dt
5l1z11g1~ t !

dz2

dt
5l2z21g2~ t !

for d2.4v0
2 ~39a!

or

FIG. 1. The phase portrait of a linearized system in the vicin
of an arbitrary point of focus type.
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dz1

dt
52az11vz21h1~ t !

dz2

dt
52vz12az21h2~ t !

for d2,4v0
2,

~39b!

where Eqs. 39~a! and 39~b! correspond to the cases of nod
and focus types of fixed point at the origin, respectively. T
roots of the characteristic polynomial of the system~34! with
«50 defining the stability of the fixed point at the origin a
real and negative for the node-type fixed pointl1,25

2(d/2)6Ad2/42v0
2 and complex conjugates with negativ

real part for the focus-type fixed point:l1,252(d/2)
6 iAvn

22d2/4[2a6 iv. Furthermore, Eq.~38! for the
largest TLLE now reads as

2m1~ t !52d1Ad224v0
2 cos~2w!, ~40a!

2m1~ t !52d ~40b!

for the node and focus cases, respectively. It immedia
follows from Eq.~40! thatm1 is always strictly negative and
in the case of a focus-type fixed point even does not dep
on time. Therefore, we come to a conclusion that if«50,
then, as it should be expected for any passive linear osc
tor, all LCE are negative and any solution of Eqs.~34! is
asymptotically stable. In the next section we derive simi
conditions for the general case of an oscillator contain
nonlinear terms. The basic scheme is essentially the sa
except we demonstrate that, depending on the particular
of nonlinearity, somewhat different choice of the coordina
transform~22!, may provide a better result maximizing th
size of the stability area.

C. Stability of a nonlinear oscillator

Let us now consider what happens if nonlinearity
present, i.e., in the case of Eq.~33! at «Þ0. Note that we do
not impose any restrictions on the value of the paramete«,
therefore, an oscillator under study has an arbitrary degre
nonlinearity. We also assume that it possesses a stable
point at the origin in the absence of an external force. T
latter assumption imposes a certain restriction on the clas
the systems amenable to this type of analysis, althoug
many cases it can be avoided by a trivial change of coo
nates shifting the position of the origin to that of one of t
stable fixed points@34#.

As we already noted, the straightforward stability analy
in terms of TLLE results in the equation of type~36!, which
gives no information on the size of asymptotic stability are
In the previous section we managed to derive a construc
result for a similar situation by applying the linear coordina
transform, reducing the system to a diagonal form. Proce
ing in exactly the same way, by diagonalizing the linear p
of the problem~34!, one can recast Eq.~36! to the following
form:
4-8
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m1~ t !5
1

2 F2d1S Ad224v0
2

1
2«

Ad224v0
2

V„x* ~ t !…D cos~2w!G if d2.4v0
2,

~41a!

m1~ t !5
1

2 F2d2
2«

A4v0
22d2

V„x* ~ t !…cos~2w!G
if d2,4v0

2 ~41b!

which, under the assumption thatw can take any value in the
interval @0;2p#, leads to the explicit formulas of type~20! for
the border of the asymptotic stability area

V1,«V~x!,V2 , ~42a!

where

V125
1
2 Ad224v0

2~Ad224v0
27d! if d2.4v0

2,
~42b!

V1,257 1
2 dA4v0

22d2 if d2,4v0
2. ~42c!

Equations~42! thus define the limits of variation for th
functionV(x) and, hence, for the coordinatex of the nonlin-
ear oscillator~33!, ensuring the asymptotic stability of mo
tion.

The conditions~42! are sufficient for the stability of al
the trajectories in the corresponding area, but they are
necessary, in the sense that the areas of stable motion i
phase space may be larger, compared to those define
inequalities~42!. Indeed, if instead of making the coordina
transformation diagonalizing the linear part of the proble
we consider the case of an arbitrary linear change of coo
nates~22!, Eqs. ~42b!, 42~c! for the borders of asymptotic
stability take the form

V1,25@Au~d2u!7v#22v0
2, ~43!

whereu, v are the free parameters defined by the Eq.~32!.
Note that Eqs.~42b!, 42~c! are just a special case of the E
~43!. If we put u5d/2; v5A6(d224v0

2), then the trans-
formation~22! makes the linear part of the problem diagon
~for the cases of node or focus, depending on the sign in
expression forv!, and Eq.~43! turns into Eqs.~42b!, 42~c!.

The size of the asymptotic stability area in the gene
case of arbitrary linear coordinate transformation is defin
by the residual

V22V154vAu~d2u!, ~44!

so the stability range of the functionV(x) is determined by
the value of the dissipation parameterd and parametersu, v,
defined in their turn by the elements of the matrixB̂ of the
coordinate transform~22!. The values ofu, v, however, are
not absolutely arbitrary. The limitation consists in the nec
01621
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l
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sity of including the origin in the interval ofV(x) variation,
since, by our initial definition of the system~33!, the func-
tion V(x) had been chosen vanishing at the origin in order
split the original vector flow to linear and nonlinear su
systems. This condition determines the value for one of
parametersu, v. The remaining freedom in the choice ofu, v
can be further used in a constructive manner for maximiz
the area of asymptotic stability in the phase space. The s
tion of the latter problem depends on the particular form
the nonlinear functionN(x), therefore, it should be per
formed on the case-by-case basis. Below, we demonstrat
efficiency of the proposed method for several nonlinear
cillators of the type~33!.

V. EXAMPLES

A. Duffing oscillator with hardening type
of nonlinearity function

To make the ideas developed in the previous section
cise, let us specify the nonlinear functionV(x) and consider
first the case of Duffing oscillator, i.e., Eq.~33! with

N~x!5x3; V~x![
dN

dx
53x2. ~45!

Many authors have studied this oscillator in different co
texts~see, e.g., the books@39,40#!. It can be considered as
classical example of a time-continuous nonlinear system
pable of producing many types of complex behavior, inclu
ing chaotic motion. As is well known@37#, the main source
of complex behavior in a generic dynamical system
saddle-type fixed points or periodic saddle orbits, which p
sess invariant manifolds capable of intersecting under
action of perturbation and forming homoclinic tangles. Sin
in the absence of external force there is only one fixed po
of focus-type in the phase space of the Duffing oscillator,
chaotic behavior and other complex motions can appear
only after new saddle-type orbits are created by perturbat
for example, by a periodic external force. The absence
saddle points in the phase space of the unperturbed oscil
is, perhaps, the main reason for the lack of analytical me
ods allowing one to predict the onset of chaos in this syst

As an approximate criterion for the appearance of cha
attractors, one can use the condition for saddle orbits to
created by external force or the stability loss of the exist
periodic attractors. If the functional form of the extern
force is simple, like a harmonic or quasiperiodic function
time, this problem can be solved analytically, at least
small values of nonlinearity and dissipation parameters,
e.g., methods of harmonic balance@30#, averaging@41#, and
Floquet stability analysis. It, however, appears quite pr
lematic ~if possible at all! to predict the appearance o
saddle-type orbits, when the number of harmonic com
nents in the external force becomes larger than three.
problem also defies analytical treatment, when the diss
tion parameterd or the parameter of nonlinearity« cannot be
considered small. So, under such circumstances, a nume
experiment becomes the only tool of analysis for the study
4-9
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various bifurcations and predicting the onset of chaotic
cillations in particular.

The method proposed in this paper is free from the dra
backs just mentioned, for it is developed for thearbitrary
level of nonlinearity and dissipation, as well asany func-
tional form of the external forcing. Indeed, by substituti
Eq. ~45! in ~43!, one can obtain the equations for the bord
of asymptotic stability in terms of the amplitude of motion

xmin
2 5

1

3«
@„Au~d2u!2v…22v0

2#, ~46a!

xmax
2 5

1

3«
@„Au~d2u!1v…22v0

2#. ~46b!

Equations~46! define minimal and maximal values for th
amplitude of oscillations with guaranteed stability. They po
sess two free parameters,u andv, which are defined by the
elements of the transformation matrixB̂. In order to specify
their values, some additional information on the type of e
ternal force and character of motion is necessary. If we
sume that the external force does not contain constant te
shifting the equilibrium position from the origin, and th
motion occurs in an approximately symmetric area arou
the unperturbed fixed point, then we can putxmin50 and
exclude the value of one of the parametersu, v from Eq.
~46a! as

v5Au~d2u!1v0 . ~47!

After the substitution~47!, the Eq.~46b! becomes

xmax
2 5

4

3«
@Au~d2u!~Au~d2u!1v0!#. ~48!

The demand of maximizing the size of the stability ar
leads to the choice ofu5d/2, for Eq.~48! has a maximum a
this point. Finally, we have the equation for the border of
stability area,

uxu,Ad~d12v0!/3«. ~49!

The general observation derived from the inequality~49! is
that the higher the dissipation level the larger is the area
asymptotic stability around the origin. An example of t
curve defined by the Eq.~49! is shown in Fig. 2~heavy line!
where we plot the dependence of the maximal stable am
tude versus dissipation parameterd, when other parameter
are fixed. In the same figure, we also plot the line of
maximal stable amplitude obtained with the coordinate tra
form B̂ diagonalizing the linear part of the problem, i.e., E
~42! ~light line!. One can see the advantage of using
optimized coordinate transform, resulting in a significant
crease in the size of the asymptotic stability area. Anot
interesting fact is that higher values of natural frequency a
result in a larger stability area, that means better stability
external perturbations of high-frequency oscillators co
pared to low-frequency ones.
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B. Duffing oscillator with soft nonlinearity

The equation of motion for this oscillator is similar to th
case of hard-mode Duffing equation considered in the pr
ous section, except the sign of the nonlinear term. Theref
we have the equation of the type~33! with

N~x!52x3, V~x!523x2.

The change in the shape of nonlinearity function results
qualitatively different types of solutions typical of this osc
lator. The motion now occurs not in the unbounded poten
well as it was in the hard-mode oscillator, but in the poten
shown in Fig. 3. In this case the amplitude of oscillations
limited from above by the homoclinic trajectory correspon
ing to the maximum of the potential curve, and the moti
becomes unbounded when the trajectory crosses the
separating the area inside the potential well from that of
unbounded motion. The presence of saddle points and
separatrix in the unperturbed potential shown in Fig. 3 ma
this system subject to various instabilities at substantia
lower levels of perturbation compared to the Duffing osc
lator with hard nonlinearity. It is well known that in th
softly nonlinear oscillator chaotic motions appear at mu

FIG. 2. Size of the asymptotic stability area vs dissipation
rameterd for the hard-mode Duffing oscillator atv051, «51. The
application of TLLE together with optimized linear coordina
transform results in a larger area of asymptotic stability~heavy line!
compared to the case of the system with diagonalized matrix of
linear part~light line!.

FIG. 3. Potential function for Duffing equation with soft-typ
nonlinearity.
4-10
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lower values of the amplitude of external force, given th
under all other parameters are kept constant. Usually,
fact is attributed to the presence of a homoclinic struct
that arises in the phase space in the vicinity of the separa
when it becomes broken by the perturbation.

It is interesting that the approach we consider in this pa
also allows us to detect the effect of lowering the instabi
threshold with respect to the amplitude of external force
the soft-mode oscillator. It should be, however, noted that
analysis of TLLE provides the threshold of stability in term
of the amplitude of oscillations, rather than the external fo
ing. This requires additional methods to be used, for es
lishing the relation between the amplitude of perturbat
and response of the system.

To demonstrate how the method works for this system,
start from the observation that for the soft-type nonlinear
the functionV(x)523x2 decreases with the growth in th
oscillation amplitude. This results in the following restrictio
for the parametersu, v defined by the necessity of includin
the origin in the range of variation in the coordinatex,

v5v02Au~d2u!. ~50!

Then, the following equation for the maximal amplitude
motion can be obtained:

xmax
2 5

4

3«
@Au~d2u!„v02Au~d2u!…#. ~51!

Simple analysis of the Eqs.~50!, ~51! reveals that, dependin
on the value ofd, there may be two ways to choose th
parameteru and, hence, the value of the maximal amplitud

~1! If d,v0 , then maximal size of the stability area
attained atu5d/2, and

xmax
2 5

d

3«
~2v02d!. ~52!

~2! If d.v0 , then the parameteru has to be chosen as
root of the equationu(d2u)5v0

2/4, and the maximal stable
amplitude does not depend ond,

xmax
2 5

v0
2

3«
. ~53!

An example calculation of the value of maximal stable a
plitude for the soft-type Duffing equation is given in Fig.
The effect of optimizing the coordinate transform is not
pronounced here as it was in the case of hard-type non
earity, although the stability area is somewhat larger in o
mal coordinates for this oscillator too. The comparison
Figs. 2 and 4 indicates that maximal stable amplitude
larger for the hard-mode oscillator, that is consistent w
previously reported results of other authors@42–44#, where
large perturbation was demonstrated to be necessary fo
taining chaotic motions in the Duffing oscillator with har
ening type of nonlinearity.
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C. Double-well Duffing oscillator

As the next example, we take a variant of the Duffi
oscillator, which possesses a saddle point at the origin in
absence of external forces. We would like now not only
define the maximal stable amplitude of motion, but a
compare our results with the predictions for chaos-aris
threshold following from the Melnikov theory@45# and con-
ventional stability analysis@30,46#. The equation we analyze
has the form

d2x

dt2
1d

dx

dt
2ax1bx35 f ~ t !. ~54!

In the absence of dissipation and external forcing, i.e., id
50 and f (t)50, the system possesses two potential we
located symmetrically with respect to the origin and cente
at x056Aa/b. When the parameters controlling dampin
and external excitation are nonvanishing, the motion is c
fined within one of the potential wells, until some thresho
in amplitude is reached, when the transitions between w
become possible. Chaotic motions exist in this system ei
as a pair of identical chaotic attractors located symmetric
with respect to the origin when the external excitation
small, or as a single symmetric attractor at larger values
the external force.

Since the method we propose here deals with low
bounds for the amplitude of motion ensuring the asympto
stability of any trajectory, we do not expect it to be app
cable to the ‘‘large’’ attractors embracing both potential we
and consider the dynamics in one of the potential wells on
To make the system~54! consistent with preceding analysi
we apply first the coordinate transformx→x2x0 , shifting
the origin to the center of a potential well. This transform
the Eq.~54! to the form

d2x

dt2
1d

dx

dt
1~2a13Aabx1bx2!x5 f ~ t !. ~55!

After such a transformation, it becomes evident that the o
difference of this system with previously considered ha

FIG. 4. Size of the asymptotic stability area vs dissipation
rameterd for a soft-mode Duffing oscillator atv051, «51. TLLE
analysis and optimized linear coordinate transform~heavy line!
compared to the case of the system with diagonalized matrix of
linear part ~light line!. Note also the difference with hard-mod
oscillator~Fig. 2!: the size of the stability area is limited from abov
and independent of dissipation, starting atd5v051.
4-11
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VLADIMIR B. RYABOV PHYSICAL REVIEW E 66, 016214 ~2002!
and soft-mode Duffing oscillators consists in the presenc
a quadratic term in the nonlinearity function. This type
nonlinearity is known to be similar in many respects to t
case of soft-mode Duffing oscillator@46,47#, as it produces
the effect of lowering the resonance frequency with the
crease in the amplitude of excitation. Another characteri
feature of motion in the potential well described by Eq.~55!
is the presence of dynamic asymmetry~or constant shift! of
the center of the phase orbit, which manifests itself start
from arbitrarily low values of the forcef (t). For example, in
the case of harmonic excitation,

f ~ t !5g cos~vt !, ~56!

the approximate solution has to be searched in the form

x5A01A1 cos~vt1u!, ~57!

contrary to the previously considered single-well oscillato
whereA050 in the first approximation.

The presence of the additional parameterA0 makes the
subsequent analysis a little more complicated, but eventu
the resulting equations have a lot in common with those
the soft-mode Duffing oscillator considered above. The fu
tional form of the nonlinear potential is now given by

N~x!53Aabx21bx3,

and the natural frequency of oscillations is defined by
parameterv0

252a. The stability area can now be introduce
in terms of the parametersA0 , A1 as the range of variation
for the variablex: xP@A02A1 ; A01A1#. The maximum
and minimum values of the functionV(x)[dN(x)/dx can
be found from the following equations:

Vmin53b~A02A1!216Aab~A02A1!

5@Au~d2u!2v#222a,

Vmax53b~A01A1!216Aab~A01A1!

5@Au~d2u!1v#222a. ~58!

Since the inequalityV(x).22a always holds inside the
stability area, we obtain the following limitation on the valu
of the parameterA0 :

A0>2A~a/3b!~)21!. ~59!

The size of the stability area is defined by the parameterA1 .
Therefore, the remaining problem consists in maximizing
value by performing an optimal choice of the parametersu,
v. The parameterv can be excluded from consideration b
combining two of the Eqs.~58! as

v5
3A1~bA01Aab!

Au~d2u!
. ~60!

Substitution of the Eq.~60! in one of the Eqs.~58! leads to
the following equation for parameterA1 :
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A1
25

u~d2u!

3b S m~A0!2a2u~d2u!

m~A0!2u~d2u! D ,

where the notationm(A0)[3(AbA01Aa)2 has been used
The maximization problem for the parameterA1 with respect
to u reduces to the following two cases, depending on
dissipation level and the value ofA0 .

~1! If d>2Am(A0)2@am(A0)#1/2, then A1
max does not

depend ond and the maximum is attained at the value ofu
defined as a root of the equationAu(d2u)5m(A0)
2Aam(A0). Then, we have

A1
max5

1

A3b
AS Fm~A0!

a G1/2

21D S F a

m~A0!G
1/2

11D .

~61!

~2! If d<2Am(A0)2@am(A0)#1/2, the value ofu maxi-
mizing the amplitudeA1 is given byu5d/2, and

A1
max5

1

A3b

d

2
A@m~A0!2a2d2/4#/@m~A0!2d2/4#.

~62!

For example, in Fig. 5 we plot the dependence of the ma
mal amplitudeA1

max on the parametersA0 and d, at a5b
51/2. The typical behavior of the curves shown in this figu
is similar to that of the soft-mode Duffing oscillator, e.g., t
amplitude of stable oscillations is limited from above a
does not depend ond, starting from a certain level of dissi
pation. Another feature is the increase of the size
asymptotic stability area in the phase space with dissipa
in case~2!, i.e., whend is below its critical value.

It is interesting to compare the performance of the p
posed method with the results of direct numerical expe
ments, as well as estimates for the chaotic instability thre
old made by means of other techniques, e.g., Melnik
method@31# or the combination of harmonic balance meth
with Floquet-type analysis@46,48#. Usually, in the frame-
work of these methods, the analysis is conducted in term
control parameters describing the external force, such as
amplitude and frequency of a harmonic excitation or simi
characteristics of a quasiperiodic forcing. Following@45# and
@46# we take the external force in the form of harmonic e
citation given by Eq.~56! and search the approximate sol
tion of Eq. ~55! in the form ~57!. The application of the
harmonic balance method@30# gives the solution in the fol-
lowing form @46#:

A05S a

b
2

3

2
A1

2D 21/2

2S a

b D 1/2

, ~63!

F S 2a2v21
15

4
bA1

2D 2

1d2v2GA1
25g2. ~64!

Equation~63! allows us to exclude the constant biasA0 from
the asymptotic stability analysis by substituting it in Eq.~58!
and obtain the equation for the border of stability area
4-12
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terms of A1 only. Some algebraic transformation of Eq
~59!–~62!, taking into account the constraint~63!, results in
the conclusion that the maximal stable amplitudeA1 is lim-
ited from above by the valueA* , whereA* is found as the
minimal positive root of the equation

2a2
3b

2
A* 226bA* S a

b
2

3

2
A* 2D 1/2

50. ~65!
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Then, depending on the value of the dissipation parame
we have two cases to consider:

~1! If d.dcr , then the maximal stable amplitude does n
depend on the dissipation level, andA1

max5A* .
~2! If d,dcr , then the maximal sizeA1

max of the area of
asymptotic stability can be derived from the equation
A2a2~3b/2!~A1
max!216bA1

maxS a

b
2

3

2
~A1

max!2D 1/2

2A2a2~3b/2!~A1
max!226bA1

maxS a

b
2

3

2
(A1

max)2D 1/2

5d,

~66!
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dcr5A2a2~3b/2!A* 216bA* S a

b
2

3

2
A* 2D 1/2

.

Figure 6 shows the result of calculations for the border
stability area by means of our method. For the chosen va
of the parametersa5b5 1

2 , the magnitude ofA* can be
found from Eq. ~65! as A* >0.335, which establishes th
critical value of dissipation at the leveldcr>1.354. Choosing
d as, e.g.,d51, one can obtain the limiting value for th
maximal stable amplitude asA1

max>0.296 atA0>20.068.
The solid line in Fig. 6 corresponds to the result of numeri
integration of the Eq.~54!, and indicates the locus of point
on thev-g plane where the amplitude of oscillationsA de-
fined as A5(xmax2xmin)/2 reaches the value ofA1

max

>0.296. The area of chaos is located well above this line
could be expected from the theoretical analysis given abo
It is also evident that the TLLE method strongly underes
mates the position of chaotic area, since it predicts, in f
the onset of any type of instabilities~not just chaotic mo-
tions!, like period-doubling or saddle-node bifurcation
some of which are known to appear at much lower levels
external excitation than chaotic attractors. The borderline
instability can be also obtained analytically by utilizing th
harmonic balance method that links the amplitude of sta
oscillations to the parametersg andv. The line calculated by
substituting the valueA1

max>0.296 to the Eq.~64! is also
plotted in Fig. 6 for the sake of comparison. One can no
good agreement of this prediction with the results of
direct numerical integration, although there is a certain d
crepancy at small values of the excitation frequency.
should be, however, noted that this deviation between
curves comes solely from inefficiency of the harmonic b
ance method at low frequencies and high values of diss
tion, resulting from inaccuracy of the approximation~57! in
this part of the control parameters space.

In order to compare the prediction of the chaos thresh
given by Eqs.~61!–~64! with Melnikov theory, we also plot
in Fig. 6 the critical line where the homoclinic structur
associated with the saddle point at the origin of the unp
f
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turbed system are expected to appear. We use for this
pose the explicit formula obtained in Refs.@32#, @45#,

gc5
2daAa

3vA2b
coshS pv

2Aa
D . ~67!

Note that at the chosen~rather high! value of dissipation
parameter the Melnikov method fails to provide the corr
location of the chaos area and gives an absolutely mislea
prediction indicating the threshold for chaotic motions
much higher levels of the external force than those wh
strange attractors actually appear~see also Ref.@46#!.

Another method of predicting the onset of chaos in t
system has been reported in Ref.@46#. It places the chaotic
area between two critical values of the frequency on thev-g
plane: the vertical tangent to the amplitude response cu
defined by the Eq.~64! and the first period doubling bifurca
tion. Although this criterion gives quite accurate predicti
for the border of chaotic zones at small values of dissipat
parameter, it loses the accuracy at higher levels of dissipa
especially in the low-frequency part of thev-g plane. Here
we use an earlier version of the same method@49# that dem-
onstrates better performance at highd values. The empirical
criterion for chaos has been formulated fora5b5 1

2 as

12 3
2 A3 ~15/4!g2<v2< 1

2 ~12d21Ad422d2115g2!,
~68!

where the chaotic area is located between the frequencie
the vertical tangent to the response curve and maximal
plitude of the response calculated in accordance with
~64!. The results of calculation using the inequalities~68! are
also plotted in Fig. 6. Apparently, this approach gives go
prediction for the location of chaotic areas on thev-g plane,
even in its low-frequency part and at quite high value of t
dissipation parameter (d51). It is interesting that, although
this method is, in fact, an empirical technique based on c
tain subjective assumptions on the possible location of ch
area in the control parameters space, it implicitly uses cer
information on the asymptotic stability of motion. Indee
the criterion~68! considers theamplitudeof motion as the
most important indicator of incipient instability, and predic
4-13
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VLADIMIR B. RYABOV PHYSICAL REVIEW E 66, 016214 ~2002!
the appearance of chaotic attractors within certain rang
the x coordinate, where expanding directions exist in the
cinity of saddle-type orbits created by the external for
Note, however, that unlike the approach proposed in
present paper, this method has certain limitations restric
its applicability in many situations of practical interest. F
example, it cannot be used when it is necessary to predic
onset of chaos in a nonlinear oscillator being excited by
external force containing more than one harmonic com
nent or when a reliability of the prediction is of crucial im
portance.

D. Pendulum oscillator

As the last example we take a classic nonlinear dynam
system, the externally driven damped pendulum. Star
from the works of Huygens more than 300 years ago,
oscillator has been at the focus of enormous interest du
its apparent simplicity, richness of dynamical behavior, a
importance of applications, such as, e.g., resistively shun
Josephson junction@50#, where it has been used as an a
equate mathematical model. In dimensionless form,
equation of motion for this system reads

d2x

dt2
1d

dx

dt
1sin~x!5 f ~ t !, ~69!

FIG. 5. The size of asymptotic stability area in the double-w
Duffing oscillator~54! vs constant shift of solution due to asymm
try of periodic orbits~a! and dissipation level~b! at a5b5

1
2 .
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wherex is the angle of elevation of the pendulum,dx/dt is
its angular velocity,d is the damping term responsible for th
decay of oscillations in the absence of external force, a
f (t) is the driving torque. Contrary to the previously consi
ered Duffing oscillator, the potential function for this osc
lator has a periodic character, i.e., consists of infinite num
of potential wells separated by the distance of 2p in the
angular coordinatex. Near the bottom of each of the wells
the behavior of this system is similar to that of the soft-mo
Duffing oscillator, with the only exception that both the d
gree of nonlinearity and the parameter of natural freque
of oscillations are now controlled by the sin(x) function, and,
therefore, cannot be tuned independently. In order to use
results obtained in the previous section for the oscillator
type ~33!, we add and subtract the termv0

2x from the left-
hand side of the Eq.~69! and have for the case ofv0

251;
«51:

N~x!5sin~x!2x; V~x!5cos~x!21.

Maximal and minimal values of the coordinatex are now
defined by the equation

V1,25@Au~d2u!7v#221,

where, again,u andv have to be chosen as maximizing th
amplitude of stable motions around the origin. Following t
same reasoning as the one we used in the case of Du
oscillator, the critical value of dissipation parameterdcr51,
which separates two qualitatively different types of behav
for oscillations located in a symmetric area around the o
gin, can be obtained.

l

FIG. 6. State diagram of the double-well Duffing oscillator~54!
at a5b5

1
2 ; d51 ~a! and its blow-up~b!.
4-14
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~1! If d,dcr , then the maximal displacement is defin
by

uxumax5cos21@~12d!2#. ~70a!

~2! d.dcr , then the size of stability area does not depe
on dissipation and is limited by the value of

uxumax5
p

2
. ~70b!

In order to check the efficiency of the proposed criterion a
compare it to the results of previous works@51–53#, we con-
sider the case of harmonic excitation of type~56! and use the
following formula for an approximate solution of Eq.~69!:

x5A cos~vt1w!, ~71!

where the amplitudeA can be found as a root of the equatio
@51#

@2J1~ t !2v2A#21~Avd!25g2. ~72!

For any given value of the dissipation level, Eqs.~70!
specify the upper bound of the amplitude of oscillations w
the guaranteed stability. By substituting the value of maxim
stable amplitude defined by Eq.~70! to the Eq.~72!, one can
obtain the borderline of the asymptotic stability area e
pressed in the explicit formg~v!. Extensive numerical analy
sis of the oscillator~69! has been performed in Ref.@51# for
the value ofd50.25, and the locus of chaotic areas on t
plane of control parametersv-g has been established. In Fi
7 we show the results of@51# together with the curve delim
iting the area of asymptotic stability found from Eqs.~70a!
and ~72! at d50.25. Apparently, the stability analysis pro
vides rather good prediction as for the onset of chaotic
cillations, especially in the region of small frequencies

FIG. 7. Comparative performance of the proposed method,
the combination of harmonic balance and TLLE analysis~solid
line!, and Melnikov criterion~dashed line! for the pendulum oscil-
lator ~71!. The areas of chaotic behavior are hatched~from Ref.
@51#!.
01621
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external excitation. For the sake of comparison, we a
show on the same plot the curve corresponding to Melnik
criterion @41#,

gcr5
4d

p
coshS vp

2 D ,

which also gives a good estimate for the threshold of ch
in pendulum oscillator at the chosen value of dissipation
rameter. Therefore, we arrive at a conclusion that for t
system the two criteria work in a complementary mann
predicting the onset of chaotic motions in different frequen
bands.

VI. DISCUSSION

We have proposed an analytic criterion for predicting t
onset of chaotic motion in a broad class of nonautonom
damped nonlinear oscillators. We suppose it can be used
first step in investigating complicated nonlinear regimes t
can arise in oscillators subject to the external perturbation
fact, the method allows obtaining the border of stability ar
in the phase space or, being combined with another te
nique, e.g., the harmonic balance procedure, in the spac
control parameters. Although it, as a rule, underestimates
actual position of the threshold of chaos, in some situation
performs better than other existing techniques such as Me
kov method or Floquet-type stability analysis of periodic
tractors. Our approach is expected to be especially usefu
situations when chaotic behavior is an undesired effect,
the problem consists in finding the area in the control para
eter space where the motion is stable and by no means
otic. From this viewpoint, we provide the stability criterio
for nonlinear dynamical systems which guarantees the
sence of an additional noise source coming from the cha
dynamics.

It has been recently recognized that in many oscillat
systems the threshold of chaos may be strongly dependen
the frequency content of the external excitation. As it w
shown, e.g., in Refs.@29#, @54#, the change of harmonic to
bifrequency excitation in an equation of class~33! results in
considerable lowering of the chaos onset in the intensity
the external force. A natural question stems from these fi
ings: what is the lowest possible level of excitation that c
result in chaotization of motion? As we have demonstra
with several examples of nonlinear oscillators, the analy
of asymptotic stability in terms of TLLE allows us to answ
this question and to estimate the maximal stable amplitud
motion, and thus provides a necessary condition for cha
motion and any other bifurcation as well. We would like
stress that the method we propose is independent of the
of external force and dimensionality of the dynamical sy
tem, therefore, it yields a fundamental limit for chaotic i
stability to appear in a broad class of nonlinear dynami
systems.

Another important motivation for applying this particula
method to the analysis of dynamical systems is that it p
vides a rigorous necessary condition for chaotic~or
Lyapunov-type! instability to appear. We would like to not

.,
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VLADIMIR B. RYABOV PHYSICAL REVIEW E 66, 016214 ~2002!
that despite considerable efforts undertaken to formulate~in
terms of control parameters! necessary and/or sufficient con
ditions for the emergence of chaotic attractors in nonlin
systems, there seems to be no universal criterion existin
the moment. In the situation when the prediction of chao
motion is necessary, the Melnikov method is commo
used. This approach provides an estimate of the distance
tween perturbed stable and unstable manifolds for a part
lar saddle-type orbit existing in the unperturbed system. If
the presence of perturbation, this distance can vanish at s
value of controls, this means an intersection of stable
unstable manifolds and presence of geometrically comp
structures in the phase space. This analysis allows us to
culate the parameter values where the homoclinic struct
appear indicating the possibility for chaotic motions to
formed. Apparently, this method gives neither sufficient n
necessary condition for chaos. Indeed, it does not provid
sufficient condition, because the method cannot guara
that the homoclinic structure, once emerged, becomes at
tive and forms a strange attractor. It does not constitut
necessary condition for chaos either, because of the pres
of multistability in any nonlinear oscillatory system. By th
term multistability we mean coexistence of several attrac
in the phase space at fixed values of all the controls. Ty
cally, each of the attractors occupies a well-separated are
the phase space and, as the control parameters change,
attractor may undergo various bifurcation sequences in
pendently of the others. Some of them may become cha
at much lower levels of perturbation compared to those p
dicted by Melnikov’s criterion.

Of course, our understanding of the necessity depend
definition. We suppose that the following statement sho
,

d
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constitute a basis for a definition of the necessary condi
for chaos, especially in view of its importance for engine
ing and other applications where chaos is considered a
undesired effect like, e.g., a source of additional noise, etA
necessary condition of chaos guarantees the absence of
otic regimes in the system in the case it is not satisfied. It is
evident that from this viewpoint the Melnikov method ca
not be considered as a proper one, since it can only guara
the absence of chaotic motions associated with agiven
saddle state, and notany chaotic attractor@32,55#.

The method proposed in the present paper estimates
maximal value of oscillation amplitude below which cha
cannot occur at all. Accordingly, the larger amplitude mea
the possibility for chaos to appear. We assert that this cr
rion can be used as a necessary condition for chaos in ac
dance with the definition given above. As far as amplitude
oscillations is concerned, it is a rigorous analytic criterio
without any approximation used at any stage of estimat
the size of the stability area in the phase space. In orde
obtain the border of instability in terms of control param
eters, e.g., amplitude and frequency of external force, so
approximation is necessary for establishing the relation
tween those parameters and size of the attractor.

Although in this paper we restricted our consideration
the systems with three-dimensional phase space, the me
can be also utilized for specifying stability threshold in hig
dimensional dynamical systems as well. The straightforw
way of performing such an analysis consists in applying
linear coordinate transform that makes the matrix of the
ear part of the problem diagonal or block diagonal. Then,
equation for the border of the stability area can be obtai
from the explicit equation of type~9! for the largest TLLE.
-

.
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